
数据结构（C语言版）（第2版）

哈夫曼树及其应用
主讲教师：汪红松

树和二叉树



教 学 内 容

1

2

3

4

5

6

树和二叉树的定义

二叉树的性质和存储结构

遍历二叉树

线索二叉树

树和森林

哈夫曼树及其应用

Contents



一、哈夫曼树的基本概念

    哈夫曼(Huffman)树又称最优树，是一类带权路径长度最短的树，

在实际中有广泛的用途。

    哈夫曼树最典型、最广泛的应用是在编码技术上，利用哈夫曼树，

可以得到平均长度最短的编码。这在通讯领域是极其有价值的。

    计算机程序操作码的优化也可以利用哈夫曼树实现。



一、哈夫曼树的基本概念

路径：从树中一个结点到另一个结点之间的分支构成这两个结点之间的

路径。

路径长度：路径上的分支数目称作路径长度。

树的路径长度：从根到每个结点的路径长度之和(PL)。

a例：

PL(a)=1+1+2+2+2+2=10

 

b

PL(b)=1+1+2+2+3+3=12

1.基本概念 



一、哈夫曼树的基本概念

带权路径长度：在树形结构中，我们把从树根到某一结点的路径长度与该结

点权的乘积，称做该结点的带权路径长度。

树的带权路径长度：树中所有叶子结点的带权路径长度之和，称为树的带权

路径长度，通常记为WPL：

WPL=wi×lii=1

n

其中：n为叶子结点的个数；
          wi为第i个叶子的权值；
       li为第i个叶子结点的路径长度。

结点的权：给树中每个结点赋予一个具有实际意义的数值，我们称该数值为
这个结点的权。

1.基本概念 



一、哈夫曼树的基本概念

例如

WPL(a)=7×2＋5×2＋2×2＋4×2＝36

其带权路径长度分别为：

2 457
a 7 5

 4

b

2

5  

42c

7

WPL(b)=4×2＋7×3＋5×3＋2×1＝46

WPL(c)=7×1＋5×2＋2×3＋4×3＝35 



一、哈夫曼树的基本概念

什么样的树的带权路径长度WPL最小？

   例如：给定一个权值序列{2, 4, 5, 7}，可构造多
种二叉树的形态:

2 457

a 7 5

 4

b

2

5  

42c

7

   WPL(a) ＝ 36      WPL(b) ＝ 46      WPL(c)＝35 

其带权路径长度分别为：



一、哈夫曼树的基本概念

         在各种形态的含有 n个叶子结点的 二 叉树中,  必存

在一棵(或几棵)其带权路径长度值WPL 最小的树，被称

为“最优二叉树” 。       

特征：

（1）权值越大的叶子结点越靠近根结点，而权值越小的叶子结点越远离

根结点。

（2）在最优二叉树中没有度数为 1 的结点; 

（3）含 n个叶子结点的最优二叉树的总结点数为 2*n-1 。

        “哈夫曼树”——最优二叉树的构造方法最早由

哈夫曼研究。



二、哈夫曼树的构造

   （1）初始化：根据给定的 n 个权值 {w1, w2, …, wn} ,
构造n 棵二叉树的集合

                F = {T1,   T2,  … , Tn}，
      其中每棵二叉树中均只含一个带权值为 wi的根结点，

其左、右子树为空树；

1.构造哈夫曼树的方法



二、哈夫曼树的构造

     选取与合并：在 F 中选取其根结点的权值为最小

的两棵二叉树, 分别作为左、右子树构造一棵新的二

叉树, 并置这棵新的二叉树根结点的权值为其左、右

子树根结点的权值之和；

（2）

删除与加入：从F中删去这两棵树,并加入刚生成的

新树；

（3）

     重复 (2) 和 (3) ,直至 F 中只含一棵树为止。（4）

   由此得到二叉树就是“最优二叉树” 

即“哈夫曼树” 。 

1.构造哈夫曼树的方法



二、哈夫曼树的构造

第1步：初始化

W＝{2，4，5 ，3} 哈夫曼树的构造过程

352 4

第2步：选取与合并

32

 5

第3步：删除与加入 54

32

 5



二、哈夫曼树的构造

W＝{2，4，5 ，3} 哈夫曼树的构造过程

重复第2步

54

32

 5

54

 9

重复第3步  5

54

 9

32



二、哈夫曼树的构造

W＝{2，3，4，5} 哈夫曼树的构造过程

重复第2步

重复第3步

 5

54

 9

32

 5

54

 9

32

14



二、哈夫曼树的构造

         n个叶子结点的哈夫曼树共有2n-1个结点,因此可用

有2n-1个元素的数组来存储哈夫曼树,  结点间的关系用

游标表示，即采用静态链表来存储哈夫曼树。

2.存储结构

    每个结点需包含其双亲结点信息和孩子结点信息，

所以构成一个静态三叉链表。

 weight          parent          Lchild          Rchild
   权值       双亲序号   左孩子序号  右孩子序号 



二、哈夫曼树的构造

3.静态三叉链表结构定义

#define N   20
#define M  2*N-1 
typedef struct 
 { int weight ; 
    int parent，Lchild，Rchild ; 
}HTNode, HuffmanTree[M+1];     /*0号单元不用*/  
  

静态三叉链表数组中前 n 个元素存储叶子结点，后n-1
个元素存储分支结点即不断生成的新结点，最后一个元

素存储哈夫曼树的根结点。        



二、哈夫曼树的构造

4.哈夫曼树构造算法

       初始化：先将n个元素都视为根结点，即孩子

和双亲指针全置0。

       建哈夫曼树的过程是：反复在数组中选双亲

为0(表示它们当前是树根)且权值最小的两结点,  
将它们作为左右孩子挂在新的结点之下,  新结点

权值为左右孩子权值之和。        



二、哈夫曼树的构造
void CreatHuffmanTree(HuffmanTree &HT,int n)

{

    //构造哈夫曼树HT

   int m,s1,s2,i;

   if(n<=1) return;

   m=2*n-1;

   HT=new HTNode[m+1]; //0号单元未用，所以需要动态分配m+1个单元，HT[m]表示根结点

   for(i=1;i<=m;++i) //将1~m号单元中的双亲、左孩子，右孩子的下标都初始化为0

   {    HT[i].parent=0;  HT[i].lchild=0;  HT[i].rchild=0; }

   for(i=1;i<=n;++i)        //输入前n个单元中叶子结点的权值  

      cin>>HT[i].weight;  

/*――――初始化工作结束，下面开始创建哈夫曼树――――*/ 



二、哈夫曼树的构造
    for(i=n+1;i<=m;++i) 

    {   //通过n-1次的选择、删除、合并来创建哈夫曼树

        Select(HT,i-1,s1,s2);

        //在HT[k](1≤k≤i-1)中选择两个其双亲域为0且权值最小的结点,

        // 并返回它们在HT中的序号s1和s2

        HT[s1].parent=i; 

        HT[s2].parent=i;   

        //得到新结点i，从森林中删除s1，s2，将s1和s2的双亲域由0改为i

        HT[i].lchild=s1;   

        HT[i].rchild=s2 ;//s1,s2分别作为i的左右孩子

        HT[i].weight=HT[s1].weight+HT[s2].weight; 

                                      //i 的权值为左右孩子权值之和

    }//for

 }



三、哈夫曼树应用——哈夫曼编码

    哈夫曼树最典型的应用是在编码，利用哈夫曼树，
可以得到平均长度最短的编码。

    平均长度最短的编码一般为不等长编码，为使各
编码间无需加分界符即可识别，其编码应是前缀码。

前缀码：如果在一个编码方案中，任一个编码都不是
其他任何编码的前缀（最左子串）。

        利用哈夫曼树可以构造不等长的二进制编码，并且

构造所得的编码是一种最优前缀编码，即可以使所传信

息的总长度最短。



三、哈夫曼树应用——哈夫曼编码

      对哈夫曼树中每个左分支赋予0，右分支赋予1，

则从根到每个叶子的路径上，各分支的值构成该叶子

的哈夫曼编码。

例：若要传输如下单词

              state, seat, act, tea, cat, set, a, eat
如何使所传送的信息编码长度最短？

    为保证信息编码长度最短，先统计各字符出现的
次数，然后以此作为权值, 构造哈夫曼树。



三、哈夫曼树应用——哈夫曼编码

7

2 3

5

15

85

10

250

0 0

0

1

1 1

100 10

010 011

编码:左分支:0\右分支:1；
         根到叶子路径上的
         值构成叶子的编码。

11

需传输信息：state, seat, act, tea, cat, set, a, eat

25783
ceats

各字符权值：

010001011011
ceats

各字符编码：

 构造哈夫曼树：



例：设有一台模型机，共有7种不同的指令，各指令
的使用频率Pi为：

指        令 I1 I2 I3 I4 I5 I6 I7

   使用频率pi 0.40 0.30 0.15 0.05 0.04 0.03 0.03

    哈夫曼树最典型、最广泛的应用是在编码技术上，
而操作码的优化也是其应用之一。

    以指令的使用频率为权值构造哈夫曼树，并求各
指令的哈夫曼编码。

三、哈夫曼树应用——哈夫曼编码



三、哈夫曼树应用——哈夫曼编码

则指令的平均码长为：

pi×li  =0.4*7+0.3*2+0.15*3+0.05*5+0.04*5
               +0.03*5+0.03*5 = 2.20

n

i=1

若用等长编码，其平均码长为3。 

指令 I1 I2 I3 I4 I5 I6 I7

编码 1 01 001 00011 00010 00001 00000

各指令的哈夫曼编码为：               



三、哈夫曼树应用——哈夫曼编码

编码：

    有了字符集的哈夫曼编码表之后，对数据文件的编码过程是：依

次读入文件中的字符，在哈夫曼编码表中找到此字符，并将该字符

转换为编码表中存放的编码串。

译码：

    对编码后的文件进行译码的过程必须借助于哈夫曼树。具体过程

是：依次读入文件的二进制码，从哈夫曼树的根结点出发，若当前

读入0，则走向左孩子，否则走向右孩子。一旦到达某一叶子时便

译出相应的字符编码。然后重新从根出发继续译码，直至文件结束

。



小结

1. 哈夫曼树的基本概念
2. 哈夫曼树的构造过程和算法
3. 哈夫曼编码的方法


